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Introduction 

Motivation for this program stems from the Army's interest in understanding and 
increasing the performance of diesel engines which serve as the main powerplant for its 
tactical vehicles. In a diesel engine liquid fuel is injected into the combustion chamber 

as the gas within it is compressed. The fuel spray vaporizes and mixes with the air, 
and ignition eventually occurs as the chamber environment attains a sufficiently high 
temperature and pressure. Since ignition initiates the entire combustion process, a 
good understanding of the ignition process is crucial to the overall performance of the 
engine in terms of its combustion efficiency as well as the knock and emission 
characteristics. 

The ignition event is clearly controlled by the chemical reactions of fuel 
oxidation and the fluid mechanics of convective and diffusive transport. Since each of 
these two components is a complex process, most of previous studies have simplified 
the problem by using either one-step overall reactions or by studying ignition in a 
homogeneous medium, which respectively simplifies the chemistry and the fluid 

mechanics. Thus there is the need to understand and quantify the coupled influences 
of the chemical and physical processes on ignition. 

In response to such a need, in the present program we have systematically 
studied the ignition of fuels in controlled diffusive environments of fuel/oxidizer 
mixing layers. Most of the studies involved the counterflow configuration created by 
impinging a cold fuel jet against a hot oxidizer jet, although studies were also 
conducted for the parallel mixing layer to simulate the practical situation of flame 
stabilization. The study utilized laser-based experimentation, computation with 
detailed chemistry and transport, and mathematical analysis with activation energy 
asymptotics. The study has qualitatively identified some very unique ignition 
phenomena, and quantitatively determined the states of ignition in terms of the fuel, 
the heated air temperature, the system pressure, and the strain rate of the flow. The 
following are highlights of the findings. Details of the results can be found in our 
annual reports as well as the journal articles listed. 
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Highlights of Accomplishments 

1. Multiple ignition, extinction, and stability of nonpremixed hydrogen/air flames: 
-> Demonstrated experimentally the existence of triple stable stationary 

states, and two-staged ignition and extinction (Fig. 1). 
-> First ignition is kinetically-dominated; second ignition thermally-assisted 
(Fig. 2). 

2. Experimental and computational studies of nonpremixed hydrocarbon ignition 
under variable pressure, flow intensity, and fuel dilution: 

-> Methane 
—» Ethane 
-> Propane 
-» n-Butane and isobutane. 

* Identified common ignition characteristics: 
-* Hot ignition preceded by cool flame type chemiluminescence ("two-staged 
ignition), except at high pressures (Fig. 3). 
-» Based on ethane modeling, first ignition is kinetically-dominated and 

involves low-to-intermediate temperature chemistry; flame ignition is 
thermally assisted and dominated by high-temperature reactions. 

-» First ignition temperature is less sensitive to changes in external 
parameters, such as flow straining or fuel dilution (Figs. 3 and 4). 
-» Ignitability enhanced by increasing fuel concentration and pressure, or by 
decreasing flow strain rate (Figs. 3-5). 
-» n-Butane is easier to ignite than isobutane (Fig. 6). 

* Butane shows clear transition to low temperature ignition at high pressures 
(Fig. 7). 

* Nonpremixed ignition vs. auto-ignition (Fig. 8): 
-* Higher temperature required for nonpremixed ignition. 
-> Reversed trend, due to fuel diffusivity reduction. 

3. Ignition enhancement by hydrogen addition: 
-4 Carbon monoxide/hydrogen (Fig. 9) 
-» Methane/hydrogen (Fig. 10) 
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4. Analytical studies of hydrogen/air nonpremixed ignition: 
—> Derived reduced kinetic models for ignition. 
-» Tested the validity of steady-state approximations in premixed and 
nonpremixed configurations (Fig. 11). 
-» Quantified the relative roles of chemistry and heat release at ignition (Fig. 

12). 

5. Unsteady ignition phenomena: 
*   System response depends on the frequency and amplitude of imposed 

oscillations: 
-> At low frequencies, the transient response follows the steady-state solution 

(Fig. 13). . 
-> At high frequencies, the system no longer responds to imposed 

oscillations (Fig. 14). 
-> Transient ignition behaves quasi-steadily at low frequencies (Fig. 15). 
-» Oscillation retards ignition at high frequencies; increasingly larger 

amplitudes are required to effect ignition (Figs. 15 and 16). 
-» Cut-off frequency exists beyond which ignition cannot occur by increasing 
the oscillation amplitude (Fig. 17). 
-» Ignitability depends on whether the excursion time exceeds the ignition 
delay time (Figs. 18 and 19). 
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